extremely left-amenable semigroup - определение. Что такое extremely left-amenable semigroup
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое extremely left-amenable semigroup - определение

Amenable banach algebra; Amenable algebra

Null semigroup         
SEMIGROUP WITH AN ABSORBING ELEMENT, CALLED ZERO, IN WHICH THE PRODUCT OF ANY TWO ELEMENTS IS ZERO
Zero semigroup; Left zero semigroup; Right zero semigroup
In mathematics, a null semigroup (also called a zero semigroup) is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously.
Monogenic semigroup         
  • Monogenic semigroup of order 9 and period 6. Numbers are exponents of the generator ''a''; arrows indicate multiplication by ''a''.
SEMIGROUP GENERATED BY A SINGLE ELEMENT
Cyclic semigroup; Periodic semigroup
In mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups.
Semigroup with involution         
SEMIGROUP EQUIPPED WITH AN INVOLUTIVE ANTI-AUTOMORPHISM
Free semigroup with involution; Free monoid with involution; Monoid with involution; *-regular semigroup; *-semigroup; Free half group; Involutive monoid; Dyck congruence; Shamir congruence; Foulis semigroup; Baer *-semigroup
In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution.

Википедия

Amenable Banach algebra

In mathematics, specifically in functional analysis, a Banach algebra, A, is amenable if all bounded derivations from A into dual Banach A-bimodules are inner (that is of the form a a . x x . a {\displaystyle a\mapsto a.x-x.a} for some x {\displaystyle x} in the dual module).

An equivalent characterization is that A is amenable if and only if it has a virtual diagonal.